MBA Executivo em Business Analytics e Big Data

Compartilhar
MUDAR DE LOCALIDADE
São Paulo, SP
Modalidade: Presencial
Escolha uma unidade da FGV
Dias e horários
Selecione
To prevent automated spam submissions leave this field empty.
Dias e horários
Selecione
  • Frequência: Quinzenal
    Sábados quinzenais das 08h30 às 18h
    Início:26/10/2024
    Data limite de inscrição: 23/10/2024
    Duração: 21 meses
    Carga Horária: 432 horas/aula
To prevent automated spam submissions leave this field empty.
  • Presencial

    Cursos presenciais e semipresenciais.

    Saiba mais sobre a modalidade ➔

    Big Data é o termo utilizado para descrever o vasto volume de dados que impactam os negócios no dia a dia. O MBA Executivo em Business Analytics e Big Data irá torná-lo capaz de analisar problemas empresariais e utilizar técnicas analíticas neste atual cenário caracterizado pela complexidade, diversidade e alto volume de dados digitais.

    Você irá adquirir: 

    • Capacidade analítica, com foco em aplicações práticas, para gerenciar e conduzir projetos que envolvam bases de dados estruturadas e não estruturadas (Big Data);
    • Competência para analisar e gerar soluções para problemas empresariais;
    • Conhecimentos aprofundados sobre modelagem de dados, análise quantitativa, identificação/resolução de problemas e gestão empresarial, a partir da aplicação prática de métodos;
    • Compreensão dos principais benefícios, desafios e riscos dos projetos analíticos;
    • Entendimento sobre características e requisitos das principais técnicas e ferramentas analíticas aplicadas na formulação, modelagem e análise de bases de dados estruturadas e não estruturadas;
    • Fundamentos de análise estatística e dos métodos computacionais necessários para conduzir análises de dados no contexto organizacional de empresas e entidades estatais, governamentais e de fins não lucrativos;
    • Entendimento sobre características e requisitos das técnicas necessárias para manusear bases de dados estruturadas e bases distribuídas e de grandes volumes (Big Data).

     

    Sobre o início das aulas: 

    1ª aula: 25/10/2024
    Data de início (aula regular): 26/10/2024

     

    Coordenador Acadêmico: José Luiz Carlos Kugler
    Programa

    MBA Executivo em Business Analytics e Big Data

    Aplicações em Decisões Mercadológicas

    Introdução às capacidades analíticas em marketing; conceitos e aplicações. Abordagens para a alocação de recursos em marketing. Estruturação das métricas para identificar os drivers de vendas, lucro e participação de mercado. Análise econômico-financeira das ações de marketing. Conteúdo Programático Mínimo: I. Introdução às capacidades analíticas em marketing; conceitos e aplicações II. Abordagens para a alocação de recursos em Marketing " Técnicas para análise e alocação de recursos em marketing " Alocação de recursos em diferentes canais e atividades de comunicação III. Estruturação das métricas para identificar os drivers de vendas, lucro e participação de mercado " Métricas para otimizar a alocação de recursos de marketing e orientar decisões " Cálculo do índice de desenvolvimento de categoria " Métricas para analisar linhas de produtos IV. Retorno sobre Investimentos (ROI) de marketing " Cálculo do ROI de marketing " Análise financeira dos investimentos em marketing V. Cálculo do Customer Lifetime Value VI. Análise dos resultados de programas de comunicação de marketing e força de vendas " Métricas para analisar o desempenho de campanhas de propaganda, promoções, relações públicas e força de vendas " Métricas para tomada de decisão no ambiente digital

    Análise Econômica e Geração de Valor

    Estruturas de Mercado. Atividade Econômica e Empresas. Políticas de Governo e Efeitos na Economia. Análise Competitiva. Métodos para Mensuração de Valor Conteúdo Programático Mínimo: I. Estruturas de Mercado " Teoria do Consumidor (Demanda) " Teoria do Produtor (Oferta) " Teoria dos Jogos II. Atividade Econômica e Empresas " Produto e Renda Nacional " Nível de Atividade Econômica " Tendências e Ciclos Econômicos III. Políticas de Governo e Impactos na Economia " Política Fiscal e Monetária " Política Cambial e Balanço de Pagamentos IV. Análise Competitiva V. Métodos para Mensuração de Valor

    Análise de Séries Temporais

    Introdução e Conceitos. Modelos de Regressão para Séries Temporais. Conceitos de Séries Temporais. Modelagem de Séries Temporais e Previsão.

    Controladoria Gerencial

    Conceitos de contabilidade financeira e gerencial. Estruturas de custo. Classificação de custos e despesas. Custeio Marginal. Custeio por Absorção. Custeio por Atividades.

    Decisões Empresariais e Raciocínio Analítico

    Desafios e dilemas do processo decisório, Abordagens para identificação e modelagem de problemas. Diferenças entre business intelligence e data Science e implicações. Gerenciamento dos projetos analíticos.

    Desafios e Requisitos dos Projetos Analíticos

    Estrutura, finalidade e produtos das fases dos projetos analíticos. Papéis, competências e habilidades dos profissionais envolvidos. Abordagens para o gerenciamento e condução dos projetos analíticos.

    Modelagem Informacional

    Análise do contexto informacional. Modelagem dimensional, na modalidade Star Schema. Verificação da estabilidade do modelo. Gerenciamento das iniciativas analíticas.

    Análise Exploratória de Dados

    Ambiente de programação R. Introdução a linguagem R. Visualização de dados em R. Conceito e tipos de variáveis aleatórias. Distribuição de frequências. Medidas descritivas (posição, dispersão, quantis). Tipos de gráfico (barplot, boxplot, scatterplot,histograma). Distribuição conjunta, marginal e condicional. Independência. Regra de Bayes. Correlação. Regressão linear simples.

    Aplicações de Estatística Espacial

    Técnicas de estatística espacial: análise de vizinhanças, tendências, correlação e autocorrelação espacial. Geoestatística e regressão espacial. Desenvolvimento de Estudo de Caso junto à turma.

    Análise de Mídias Sociais e Mineração de Texto

    Relações. Redes sociais no Contexto Empresarial. Tipos de rede. Análise de Redes de Comunicação. Redes em Ambiente Organizacional. Mineração de Texto. Análise de sentimentos. Modelagem de dados textuais.

    Análise Preditiva Avançada

    Otimização não linear. Algoritmos estocásticos. Redes neurais (feedforward, recorrentes, adversariais, generativas, profundas). Máquinas de vetores de suporte. Técnicas para seleção e combinação de modelos.

    Análise Preditiva

    Introdução à modelagem preditiva. Regressão Logística. Regularização. Árvores de Decisão, Florestas Aleatórias e Bagging. Validação de modelos preditivos.

    Bancos de Dados Distribuídos

    Computação distribuída e em nuvem. Revisão de bancos de dados relacionais e da linguagem SQL. Integração entre Hadoop e demais ferramentas de business Analytics. Acesso ao Hadoop através de interfaces de programação e comandos, Utilização de bibliotecas de análise in-db (MADLIB), Tecnologias de dados não-estruturados (NoSQL).

    Banco de Dados e Visualização

    Big Data e Data Driven Economy. Introdução à análise exploratória de dados em SQL e Tableau. Ambiente e programação SQL. Visualização de dados com Tableau.

    Estatística Espacial

    Geomarketing e Geoinformação - Evolução e o Estado-da-Arte. Conceitos de Informações Espaciais - Modelos de Dados. Exploração de Dados Geográficos. Análise Geográfica e Estatística Espacial.

    Inferência Estatística

    Modelo Estatístico. Estimação e Intervalo de confiança. Testes de Hipótese. Regressão múltipla. Análise de Regressão. Análise de resíduos

    Modelagem Estatística Avançada

    Pré-tratamento de dados. Detecção e tratamento de outliers. Tratamento de dados faltantes. ANOVA e comparações múltiplas. Multicolinearidade. Métodos baseados em vizinhança. Regras de Associação e Market Basket Analysis.

    Métodos Matriciais e Análise de Clusters

    Fundamentos de Cálculo e Álgebra Matricial. Matriz de covariância. Redução de dimensionalidade. Análise de componentes principais. Análise fatorial. Clusterização por K-means e cluster hierárquico.
    Investimento
    Para obter informações sobre o valor de investimento e formas de parcelamento, consulte diretamente a nossa unidade.
    Público-alvo
    Recomendado para profissionais que:
    • desejam transformar dados em informação e conhecimento;
    • são executivos, gestores, analistas, especialistas e consultores que atuam em setores de informação intensiva;
    • desempenham ou virão a desempenhar papéis de liderança.
    Pré-requisitos:
    • Tempo mínimo de conclusão de graduação: 2 anos.
    • Tempo mínimo de experiência profissional: 3 anos.
    • desejável conhecimento intermediário da língua inglesa para a leitura de materiais a serem disponibilizados
    Maior experiência profissional pode reduzir a necessidade do tempo mínimo de formado.       
    A matrícula nesse curso pode possuir como pré-requisitos de formação e de experiência profissional tempos mínimos superiores aos indicados. Consulte-nos para obter mais detalhes do curso.
    Certificado

    Ao ser aprovado no curso de MBA Presencial, você terá direito ao certificado impresso, em nível de especialização (pós-graduação lato sensu), emitido por uma das escolas FGV.

    Processo seletivo

    O processo seletivo é composto pela participação do candidato em uma Reunião de Orientação Acadêmica, que será realizada virtualmente. As Reuniões têm como referência os critérios de seleção definidos pelos coordenadores acadêmicos de cada programa. Nesta reunião será avaliado qual é o melhor programa para o seu momento de carreira e os pré-requisitos de ingresso. Caso o candidato não seja aprovado para o curso que se inscreveu, será orientado a realizar um programa que esteja alinhado ao seu perfil.

    Atenção!

    É obrigatório o upload do currículo profissional e acadêmico além do preenchimento da ficha de inscrição.

    Após o preenchimento da ficha e envio do CV o candidato receberá, em até 3 dias úteis, um e-mail com uma indicação de dia, horário e unidade para o encontro, que também poderá ser realizado de forma virtual. Caso queira reagendar é só clicar no link indicado no e-mail de agendamento.

    As informações submetidas pelo candidato e o resultado do processo seletivo serão mantidas em caráter confidencial e divulgadas somente ao e-mail cadastrado.

    Importante: o prazo limite de inscrição é informado no site. Candidatos que se inscrevem próximo a data limite devem ter ciência que o resultado do processo seletivo também será disponibilizado próximo ao início do curso. Casos de ingressantes após a data estipulada, é importante atentar-se que a primeira disciplina já iniciada entrará como trancada, sendo necessário o cumprimento da mesma posteriormente.

    • CÉDULA DE IDENTIDADE
    • CURRÍCULO ACADÊMICO E PROFISSIONAL
    • DIPLOMA DO CURSO DE GRADUAÇÃO
    • FOTO RECENTE 3 X 4 (COLORIDA)